English_301_Writing
tmp
lims
$ \lim\limits_{x -> 0} \frac{sinx} {x} = $
$ \lim\limits_{x -> \infty} (1 + \frac{1} {x})^x = $
Derivative
$ (x^\alpha)^{(n)} = $
$ (x^n)^{(n)} = $
$ (\frac{1}{x})^{(n)} = $
$ (sinx)^{(n)} $
$ (cosx)^{(n)} $
$ (\frac{1}{x + a})^{(n)} = $
$ (a^x)^{(n)} = $
series
Fourier
$ a_n = $
$ b_n = $
$ f(x) ~ $
Dirichlet
$ S(x) = $ans
lims
1
e
Derivative
$ \alpha(\alpha - 1)(\alpha - 2) … (\alpha - n + 1)x^{\alpha - n} $
n!
$\frac{(-1)^n n!}{x^{n+1}} $
$ sin(x + \frac{n}{2} \pi) $
$ cos(x + \frac{n}{2} \pi) $
$ \frac{(-1)^n n!}{(x + a)^{n+1}} $
$ a^x ln^n a ,(a > 0)$
series
Fourier
$ \frac{1}{l} \int^l_{-l} f(x) cos \frac{n \pi x}{l} dx , n = 0,1,2,3…$
$ \frac{1}{l} \int^l_{-l} f(x) sin \frac{n \pi x}{l} dx, n = 1,2,3…$
$ \frac{a0}{2} + \sum\limits{n = 1}^{\infty}(a_n cos\frac{n \pi x }{l} + b_n sin\frac{n \pi x}{l}) $
当x是f(x)的连续点时,f(x)
当x是f(x)的第一类间断点时, $ \frac{f(x-0) + f(x + 0)}{2} $
English
what if 如果。。。将会。。。有没有这样一种可能……
how 如何,多么
2023_Eng_301(Powered By LQR)
Here is a thrilling scene, featuring two teams racing on dragon boats with crowds of people cheering on the bridge. At the corner of the picture, an old woman is holding her husband’s hand, smiling with satisfaction, expressing her happiness seeing the dragon boat race of their village is getting more and more popular.
The idea of the artist lurking behind the caricature can be perceived as an appreciation of the boosting tourism based on traditional Chinese festival in villages. A majority of relevant departments tend to develop blinking forms of activities while overlooking the very essence of them, leading to the result that commercial interest is overstated and the beauty of conventions are forgotten. This tendency may seem innocuous in the short term, risks erasing the sense of belonging in dwellers’ hearts and jeopardizing the real interactions between people and the past in a larger sense. To address the obstacles met in advancing a county requires a shift in mindset-focusing on the daily lives of the public and the thriving of cultural activities. The responsibility urges city authorities to fulfill their role through leading the trend, establishing proper environment for citizens to enjoy such festivals.
With collective commitment in promoting traditional affairs, we can aspire to see more villages or cities to have significant changes and win both ecologically and admirably.
RTX30 & cuda9 踩坑记录
通过查阅资料,发现RTX30系对cuda9有支持问题
ERROR Graphviz 的 dot 工具未被正确找到或配置
assertionerror 3221225477
网站内下载Graphviz并配置环境变量
failed to run cuBLAS routine: CUBLAS_STATUS_EXECUTION_FAILED
解决方案conda install blas
已安装pydot库但是仍然报错ImportError: Failed to import pydot. Please install pydot
解决方案pip install pydot
DOES NOT conda install pydot一个不太常见的打印速度慢的问题
问题背景
一体机从购入(2017年中)至2025年1月使用,打印,扫描一切正常。2025年2月出现打印速度很慢,打印测试页一张大约需要5min左右。扫描文件正常,包括传输速度
一台HP-M126nw一体机。一台小米路由器4a千兆版
连接方式
节点:打印机、路由器、终端设备(PC/手机)
打印机通过2.4Ghz Wi-Fi连接路由器,其他终端设备(PC,手机)通过2.4Ghz Wi-Fi和5Ghz Wi-Fi连接路由器
路由器购入于2018年中,打印机购入于2017年中
解决方案
路由器换新
尝试过的解决方案【以下于本例中均无效】
重启Print Spooler
重新安装驱动
将驱动替换为PCL
将驱动替换为aserjet p1108驱动
打印机重置
因为电脑是通过网卡启动,所以切换系统比较自由。一开始是以为Windows 11的问题,而且HP社区也有相关的情况,所以当时就退回了当时安装的Windows 10, 发现Windows 10下也有问题,然后又退回Windows 7,Windows 7下问题依旧。OS X测试了:OS X10.9、macOS16。手机无线打印测试了AirPrint
关于有线打印,由于打印机距离电脑过于远,没有尝试
Analysis
math_record
申论
数量关系与资料分析
数学运算
代入排除法
题目选项信息充分,题目有几个量则选项有几个量与之对应,优先考虑排除,甚至可以只算部分,比如只算最后一位
可以考虑边界
1 | 江苏2020-B类 |
1 | 2024江苏 |
1 | 2024浙江选调 |