SynTime

知行合一 盖周天之

0%

tmp

lims

  1. $ \lim\limits_{x -> 0} \frac{sinx} {x} = $

  2. $ \lim\limits_{x -> \infty} (1 + \frac{1} {x})^x = $

Derivative

  1. $ (x^\alpha)^{(n)} = $

  2. $ (x^n)^{(n)} = $

  3. $ (\frac{1}{x})^{(n)} = $

  4. $ (sinx)^{(n)} $

  5. $ (cosx)^{(n)} $

  6. $ (\frac{1}{x + a})^{(n)} = $

  7. $ (a^x)^{(n)} = $

    series

    Fourier

  8. $ a_n = $

    $ b_n = $

    $ f(x) ~ $

  9. Dirichlet
    $ S(x) = $

  10. ans

    lims

  11. 1

  12. e

Derivative

  1. $ \alpha(\alpha - 1)(\alpha - 2) … (\alpha - n + 1)x^{\alpha - n} $

  2. n!

  3. $\frac{(-1)^n n!}{x^{n+1}} $

  4. $ sin(x + \frac{n}{2} \pi) $

  5. $ cos(x + \frac{n}{2} \pi) $

  6. $ \frac{(-1)^n n!}{(x + a)^{n+1}} $

  7. $ a^x ln^n a ,(a > 0)$

series

Fourier

  1. $ \frac{1}{l} \int^l_{-l} f(x) cos \frac{n \pi x}{l} dx , n = 0,1,2,3…$

    $ \frac{1}{l} \int^l_{-l} f(x) sin \frac{n \pi x}{l} dx, n = 1,2,3…$

    $ \frac{a0}{2} + \sum\limits{n = 1}^{\infty}(a_n cos\frac{n \pi x }{l} + b_n sin\frac{n \pi x}{l}) $

  2. 当x是f(x)的连续点时,f(x)
    当x是f(x)的第一类间断点时, $ \frac{f(x-0) + f(x + 0)}{2} $

English

  1. what if 如果。。。将会。。。有没有这样一种可能……

  2. how 如何,多么